GPT为什么没做成APP?( 二 )


能够真正引发全民体验热潮的,还是那些能够通过社交软件分享、小程序、App等形式,低成本快速触达的能力,不需要什么“智能涌现”,更在乎有趣、好玩 。
往深了说,大模型技术被视为“新工业革命”的引擎,要发挥效应,必须将技术能力更好地集成到产品和服务中去 。此时,移动端能够提供至少三重价值:
第一,规模落地 。
中国互联网络信息中心发布第51次《中国互联网络发展状况统计报告》中,我国10.67亿网民,使用手机上网的比例为99.8%,移动端用户已经远远超过了PC端的用户,要提升生成式AI的应用范围,移动端应用必不可少 。
第二,商业潜力 。
高科技行业的主流市场,是由“实用主义者”组成的,相比技术的前沿性、炫酷感,他们更看重技术解决方案的可靠、稳定、性价比、配套服务等 。移动端的广泛普及度、即时访问、便捷低成本的优势,可以让AI以更短的路径触达用户,在移动端应用AI技术是大势所趋 。
开发者眼中的AIGC应用是这样的:

GPT为什么没做成APP?

文章插图
OpenAI发布会演示的编程能力
大众眼中的AIGC应用是这样的:
GPT为什么没做成APP?

文章插图
某GPT类应用平台截图
第三,市场壁垒 。
大模型的商业化路径之一,是走向产业,走向ToB,将大模型能力封装为AI解决方案,参与到千行百业的数字化、智能化进程中 。
如今头部科技公司、云厂商都在炼大模型,很多直接对标GPT-3.5,没有显著的差异化价值,很难与业界领先水平拉开差距 。
云厂商要打开ToB市场,移动端应用工具与能力是非常有吸引力的 。近年来,不仅消费类、服务型企业,在不断加强移动端侧的布局和产品能力,一些传统的企业和机构,比如工业制造、政务银行等,无论是在内部生产管理中移动化,也推出了更多移动应用来更好地服务终端用户 。如果直接在云上端到端用好大模型,比如训练开发环节直接调用云端的大模型和AI算力资源,完成后,一键分发到智能手机等终端上,可以大大减少工作量 。
GPT为什么没做成APP?

文章插图
某GPT 类应用开发平台
互联网的演进之路,已经说明,无论To B还是To C行业,都在追求越来越集约精简的终端硬件、越来越低门槛的交互入口、越来越轻盈的软件应用 。
所以说,大模型从云入端,是模型服务商实现商业化的必争之地 。
从云入端,一条天路
高瞻远瞩如OpenAI和DeepMind,照样有商业化的要求 。赚钱嘛,不寒掺 。可是,大模型由云入端,这个钱还真没那么好赚 。非不为也,实不能也 。
云计算、AI能力要进入移动终端设备,所面对的是一条天路:
首先,一些大型的生成式AI应用,运行环境在云上,要经过网络传输,而移动端的设备能力、网络环境,是很多样且不稳定的,比如从5G蜂窝网络转移到室内宽带,或者在高架桥、地铁等特殊环境,都有可能让生成过程中断或失败,影响到端侧体验 。
其次,生成式AI应用的计算量比较大,在端侧加载渲染运行时,比如智能手机CPU会有比较高的负载,出现卡顿、发热、电量损耗等情况,如果让AI改一篇文档画一张图就咔咔掉电,当然不能接受 。
GPT为什么没做成APP?

文章插图
此外,把AI深度集成到业务中,必须通过云计算,而云端开发环境和端侧是不同的操作系统 。这意味着,开发者要进行二次开发或迭代开发,完成之后才能进行不同终端下的触达,同事要考虑不同终端的兼容性,这就提升了AI云应用的风险成本、人力成本、时间成本 。要保证集成之后的应用效果,需要云平台有一整套完整的产品服务和工具来支撑快速搭建、验证、部署分发 。
另外,云侧和端侧的架构不同,也导致算力割裂,云端一体的AI应用开发要充分结合端侧算力和云上算力,一部分应用场景搭建在端,一部分搭建在云,这就给云厂商带来了比较大的技术难题:如何提供稳定一致的底层环境?
天路难行亦需行 。大家都知道,云计算靠基础设施IaaS层是很难赚到钱的,云厂商炼大模型,本质上是希望提升软件的先进性,进而调动SaaS服务的商业价值 。
要让个人用户和企业,都得到简单、易用、低门槛的大模型能力,云厂商不仅要训练基础模型,还需要在产业链上游,就解决AI应用从云到端的一系列技术难题,为开发者和产业用户提供移动AI开发能力,才能让大模型在端侧爆发 。


推荐阅读