参数方程公式大全图解 参数方程公式( 二 )


三、调整心态,正确对待考试 。
首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳 。
调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪 。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感 。
在考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度 。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥 。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去 。
Q4:参数方程有哪些公式?参数方程与普通方程的互化最基本的有以下四个公式:
1.cos2θ+sin2θ=1
2.ρ=x2+y2
3.ρcosθ=x
4.ρsinθ=y
其他公式:
曲线的极坐标参数方程ρ=f(t),θ=g(t) 。
圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标
椭圆的参数方程 x=a cosθy=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 [2]
双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数
或者x=x'+ut,y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)
圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数 。
扩展资料
参数是参变数的简称 。它是研究运动等一类问题中产生的 。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量” 。
这类实际问题中的参变量,被抽象到数学中,就成了参数 。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便 。
用参数方程描述运动规律时,常常比用普通方程更为直接简便 。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想 。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解 。
根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难 。
参考资料:百度百科参数方程
Q5:参数方程的主要公式及运用是怎样的?在给定的平面直角坐标系中,如果曲线上任意一点的坐标(x,y)都是某个变数t的函数x=f(t),y=φ(t)且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数 。类似地,也有曲线的极坐标参数方程ρ=f(t),θ=g(t)
圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标
椭圆的参数方程 x=a cosθy=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数
椭圆
双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数
抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数
直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数.
或者x=x'+ut,y=y'+vt (t∈R)x',y'直线经过定点(x',y'),u,v表示直线的方向向量d=(u,v)
圆的渐开线x=r(cosφ+φsinφ) y=r(sinφ-φcosφ)(φ∈[0,2π)) r为基圆的半径 φ为参数
Q6:x=1的参数方程是什么 怎么算出来的这是一条过(1,0)且倾角θ=π/2的直线 。
由直线参数方程公式:
{x=(cosθ)t+x0
{y=(sinθ)t+y0
得其参数方程:
{x=(cos(π/2))t+1
{y=(sin(π/2))t+0
即:
{x=1
{y=t (t∈R)
扩展资料
圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标


推荐阅读